为您找到"
数学的概念
"相关结果约100,000,000个
数学(英语:mathematics;源自古希腊语μάθημα, máthēma;缩写为math或maths),是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。
17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换,微积分的概念也在此时形成。随着数学转向形式化,为研究数学基础而产生的集合论和数理逻辑等也开始发展。数学的重心从求解实际问题转变到对一般形式上的思考。
行列式是数学中的一个函数,将一个 的矩阵 映射到一个标量,记作 或 | | 。 在本质上,行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。 或者说,行列式描述的是在n维向量空间中,一个线性变换对"体积"所造成的影响。无论是在线性代数、多项式理论,还是在微积分学 ...
数学概念(mathematical concepts)是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和 ...
先说数学,再说数学中的定义。 数学是研究现实世界的空间形式和数量关系的科学,是从观察实物得出的一些公理(包括一些基本定义)出发,用实事求是的[而非单纯思辨的]逻辑演绎推导(证明)得出一定结论的科学理论体系。数学史权威莫里斯•克萊因教授说:"亚里士多德认为公理是从观察 ...
高等数学全册的所有知识点汇总,包括概念、定理及公式十分齐全,建议收藏。 主要内容分为基础准备、函数 极限 连续、一元函数微分学、 一元函数积分学 、向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数以及常微分方程九个部分。
数学概念的形成和发展 数学概念是人类对现实世界数量关系和空间形式的抽象概括,是数学思维的基本形式。 从原始人类对数量的简单认知,到现代数学高度抽象的理论体系,数学概念的发展经历了漫长而复杂的演变过程。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。数学科学是自然科学、技术科学等科学的基础,并在经济科学、社会科学、人文科学的发展中发挥越来越大的作用。 数学的应用越来越广泛,正在不断地渗透到社会生活的方方面面,它与计算机技术的结合 ...
数学,在我们的生活中必不可少。那么,数学到底是什么呢? 让我们一起来了解一下数学吧! 数学是传统的 数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学透过抽…